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Abstract

With the growing popularity of symmetric multiprocessors (SMPs), shared-memory pro-
gramming models have become more important. Of particular relevance to scienti�c pro-
grammers will be those paradigms that can be used within message-passing codes. POSIX
Threads (Pthreads) is one such shared-memory programming model. While only de�ned for
use within C programs, the Fortran API to Pthreads (FPTHRD) developed at the ERDC
MSRC gives Fortran programmers access to the Pthreads library functions.

During development of the Fortran API, small problems, focused on very speci�c func-
tionality, were coded and run to demonstrate the potential e�ectiveness of Pthreads on
numerical computations. Taking the next logical step, we have applied threaded and con-
current programming approaches to a complete, production-level application using the
FPTHRD package on the SGI Origin 2000 at the ERDC MSRC. The code used in this
study is a multiblock grid version of the Princeton Ocean Model (MGPOM) coastal ocean
circulation model. This code uses MPI for processing individual grid blocks on separate
processors and sharing of data between blocks.

We describe the process used to modify the MGPOM code for concurrent computations
within MPI processes. This includes pro�ling to identify sections of code that could bene�t
from threading and dependency analysis of loops included within selected routines. Pre-
liminary tests with only a single subroutine of the MGPOM code modi�ed for threaded
computation have shown a 15% speedup. Code modi�cations to achieve these results took
less than 15 minutes. We expect further execution time reductions as other routines are
modi�ed for concurrent execution.
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1 Introduction

Pthreads is a POSIX standard library [4] for expressing concurrency on single processor

computers and symmetric multiprocessors (SMPs). Since many scienti�c computations

contain opportunities for exploiting functional, or task-level concurrency, many Fortran

applications would bene�t from multithreading. However, as useful as the Pthreads stan-

dard is for concurrent programming, a Fortran interface is not de�ned. This de�ciency was

recti�ed with the development of a Fortran 90 API to Pthreads (FPTHRD) [3].

For many programmers that have been working with distributed memory models, such

as MPI, shared memory, multithreaded programming may be unfamiliar. While the data

decomposition used within a problem may be similar between the two models, the sharing of

data and synchronization|handled automatically via message passing routines|between

threads is the responsibility of the programmer. Fortunately there are standard program-

ming techniques that can be used to facilitate sharing and synchronization between threads.

We shall examine some of these standard methods and apply them to a production

quality ocean circulation model. This code, MGPOM, is a modi�cation of the Princeton

Ocean Model (POM) that incorporates a multiblock grid [1]. In Section 2 we present a

brief outline of the code and how multiblock grids have been applied to it. Section 3 gives

a summary of the relevant functionality within the Pthreads library and details of the

FPTHRD package. Section 4 details how to apply Pthreads to existing codes. Examples

from the development and implementation of the multithreaded MGPOM code will be used

for illustration. The performance improvements from running this threaded code are given

in Section 5.
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2 MGPOM Code

The coastal ocean is a region receiving a great deal of attention owing to an increased

utilization for human habitation, aquatic development, and military operations. These

activities require a knowledge of dynamic and thermodynamic structures of the coastal

regions such as water circulation, ocean wave dynamics, storm surges, and evolution of

seawater temperature and salinity. The POM is a three-dimensional, primitive equation,

time-dependent, � coordinate, free surface coastal ocean circulation model. The model

primitive equations used describe the velocity, surface elevation, salinity, and temperature

�elds in the ocean. The ocean is assumed to be hydrostatic and incompressible (Boussinesq

approximation).

Over the years, the traditional one-block rectangular grid has been used for ocean cir-

culation modeling. This technology encounters di�culty on computational grids with high

resolution owing to the large memory and processing requirements. For a large body of

water with complicated coastlines, the number of grid points used in the calculation (wa-

ter points) is often the same or even smaller than the number of unused grid points (land

points). It is known that domain decomposition can be used to partition the traditional

one-block grid into sub-domains that reduce the unused grid points and improve perfor-

mance of the ocean model [9]. MPI [10] can be used to parallelize this type of computation

by assigning each sub-block to a di�erent MPI process. Communication is then used to

synchronize data in the overlap regions of each block at appropriate places within the code.

A multiblock grid generation technique and parallel implementation of the MGPOM

ocean circulation code was proposed and used e�ectively in [7]. The multiblock grid gen-
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eration technique allows for the elimination of blocks composed mainly of land grid points.

However, focusing on the elimination of land points from the new data set can result in

blocks of widely varying size and the potential for severe load imbalance. For this study,

we shall use threads to assist in restoring a better load balance between MPI processes.

That is, rather than assign blocks to threads, threads shall be used in order to speed up

execution within a block. Many of the same problems that would result from threading at

the block level will be encountered by threading computations within blocks.

3 Pthreads and the Fortran API

Pthreads is the library of POSIX standard functions for concurrent, multithreaded program-

ming. The POSIX standard only de�nes an application programming interface (API) to

the C programming language, not to Fortran. Many scienti�c and engineering applications

are written in Fortran. They would bene�t from multithreading, especially on symmetric

multiprocessors (SMP). In this section we present a brief background on multithreaded

programming and the use of Pthreads. More complete descriptions of the POSIX thread

library can be found in the books by Butenhof [2], Lewis and Berg [5], and Nichols et al [8].

We also present here some of the relevant details of the interface to that part of the Pthreads

library that is compatible with standard Fortran.

3.1 Pthreads Details

Multithreading is a concurrent programming model. Multiple threads may execute concur-

rently on a uniprocessor system. Parallel execution, however, requires multiple processors

sharing the same memory; i.e., SMP platforms. Threads perform concurrent execution at
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the task or function level. A single process composed of independent tasks may break up

these computations into a set of concurrently executing threads. Threads are created to exe-

cute an assigned subroutine within the program. Since all POSIX threads executing within

a process are peers, there is no explicit parent-child relationship unless the programmer

speci�cally implements such an association.

With separate threads executing within the same memory address space, there is the

potential for memory access con
icts; i.e., multiple threads attempt to concurrently write

to the same memory location (write/write con
ict) or one thread is reading a memory loca-

tion while another thread is concurrently writing to that same memory location (read/write

con
ict). Since scheduling of threads is largely non-deterministic, the order of thread oper-

ations may di�er from one execution to the next. It is the responsibility of the programmer

to recognize these potential con
icts and control them.

Pthreads provides a mechanism to control access to shared, modi�able data. Those

portions of the code which allow access to shared data are known as critical regions. Locks,

in the form of mutual exclusion (mutex) variables, prevent threads from entering critical

regions of the program while the lock is held by another thread. Threads attempting to

acquire a lock (i.e., enter a protected code region) will wait if another thread is already in

the protected region.

Pthreads provides an additional form of synchronization through condition variables.

Threads may pause execution until a particular condition has been met. (Where threads

wait for the speci�c condition of a mutex to be released by another thread, condition

variables allow a thread to wait on any feasible conditional expression the programmer

requires.) The update of the shared variables within a conditional expression is protected
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by a mutex associated with the condition variable. When a thread waits for the signal on the

condition variable, the mutex is relinquished to allow other threads to a�ect the conditional

expression being waited on. When a thread modi�es variables of the conditional expression,

a signal to wakeup may be sent to a thread waiting on the associated condition variable.

The mutex is re-acquired after this wakeup signal is received. Because spurious wakeup

signals are not disallowed by the POSIX standard and may be inadvertently received, good

programming practice dictates the conditional expression be tested within a WHILE loop

construct whose body contains a call to the condition variable wait routine. The conditional

expression of this loop should evaluate to FALSE only when the condition being waited upon

has been met, TRUE otherwise. Thus, if the wakeup condition has not been met, threads

that receive incorrect signals will return to waiting since the while loop test will evaluate

to TRUE.

3.2 FPTHRD Details

The FPTHRD package consists of a Fortran module and �le of C routines. The module

de�nes Fortran derived types, parameters, interfaces, and routines to allow Fortran pro-

grammers to use Pthread routines. The C functions provide the interface from Fortran

subroutine calls and map parameters into the corresponding POSIX routines and function

arguments.

The names of the FPTHRD routines are derived from the Pthreads root names; i.e.,

the string following the pre�x pthread . The string fpthrd replaces this pre�x. In this

way, a call to the Pthreads function pthread create() translates to a call to the Fortran

subroutine fpthrd create(). For consistency, all POSIX data types and de�ned constants
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pre�xed with pthread (PTHREAD ) are de�ned with the pre�x fpthrd (FPTHRD )

within the Fortran module.

The Fortran API preserves the order of the arguments of the C functions and provides

the C function value as the �nal argument. This trailing integer argument is most often

used to return an indicator of the termination status of the routine. Fortran interface blocks

also make it possible for the status parameter to be optional in all but one Fortran routine

call.

An initial data exchange is required as a �rst program step before using other routines in

FPTHRD. Initialization is performed with a call to the routine fpthrd data exchange().

This routine is similar in functionality to the MPI INIT() routine from MPI. The data

exchange was found to be necessary because the parameters de�ned in Fortran or constants

de�ned in C are not directly accessible in the alternate language. One such value of note is

the parameter NULL passed from Fortran to C routines. This integer is used as a signal

within the C wrapper code to substitute a NULL pointer for the corresponding function

argument.

4 How to Thread Existing Codes

Unlike OpenMP loop-level directives, Pthreads supports concurrency at the task or func-

tional level. Thus, if entire subroutines from the code could be used for targets of thread

creation, only minor modi�cations of the code would be necessary. Otherwise, the program-

mer's e�orts to thread an existing code would be centered on locating those parts of the

code which could be executed concurrently and extracting the lines from the program that
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implement these portions into utility subroutines that are then used for thread creation and

execution. It should be obvious that the former situation is more desirable.

With the goal of using the existing subroutine structure of the code as much as possible,

we have found that threading existing codes involves three related phases:

1. Identify subroutines eligible for concurrent execution,

2. Locate concurrent execution within each subroutine, and

3. Insert calls to Pthreads routines to create and manage threads as well as enforce

mutual exclusion required by data decomposition.

In the following sections, we shall examine each of these actions. Our experiences with

threading the MGPOM code will be used for examples of each phase.

4.1 Identifying Subroutines

As stated previously, one of the goals of our threading e�orts was to better load balance the

execution time of those blocks that have more data than others. Previous studies [6] have

used OpenMP for accomplishing this. Pro�ling the MGPOM code revealed several routines

that accounted for more than half of the total execution time. The focus of our e�orts was

concentrated on these routines.

Once candidate subroutines are identi�ed, each must be examined in more detail to

ascertain whether or not the subroutine could be run concurrently within each MPI process.

Methods for this determination are covered in more detail within the next section. The

structure of the subroutine and use of data is directly related to how much labor will be

involved in threading a chosen subroutine. In all cases, it is common sense that the amount
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of e�ort required to thread a subroutine be compared to the potential amount of speedup

that is expected to result. It makes little sense to put in many hours of work on a complex

concurrency scheme within a subroutine that does not signi�cantly a�ect the total amount

of execution time.

4.2 Finding and Expressing Concurrency

After choosing subroutines for potential concurrent execution, each must be examined to

determine if concurrent execution is feasible. For the MGPOM code, each subroutine is

�lled with many di�erent loops operating on arrays from COMMON blocks and arrays sent

as parameters. Thus, the potential for concurrency is dependent on how those arrays

are partitioned and assigned to threads. Code written without loops may also provide

concurrent execution potentials. Loops within a subroutine provide the easiest construct

for locating potential concurrency within a subroutine. However, taking advantage of the

identi�ed concurrency may require drastic restructuring of the code such as encapsulation

of concurrent functionality within new subroutines.

The most apparent case for �nding concurrency is within loops where individual iter-

ations may be executed independently. The loop iterations are simply divided among the

created threads. Which iterations are assigned to which threads may be arbitrary or may be

guided by some more orderly scheme based on the data. A static assignment of iterations

is easy to implement with Pthreads since a schedule of work may be formulated onto a

predetermined number of threads.

In order to implement a dynamic scheduling of iterations onto threads would involve

keeping track of which threads have been assigned which iterations along with a mechanism
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to assign new iterations to threads that have completed a previous iteration. This dynamic

scheduling is not overly di�cult to implement and would be useful in load balancing loop

iterations that take di�erent amounts of computation to complete.

In a more general case, subroutines may contain sequential code between loops. Once

a method for breaking up loop iterations among threads is devised, it must be decided

how to correctly execute the non-looped code. Because we are assuming that all threads

execute the entire subroutine, this code may be executed concurrently with multiple threads

or may be designated for execution by a single thread. The former case is most desirable

since it would nominally involve innocuous duplication of local variables and a duplication

of e�ort as all threads computed the same results. The latter case would require some

mechanisms be coded in order to prohibit threads from executing code sequences that would

be assigned to a single thread; the complexity of such mechanisms would depend upon the

data decomposition and access restrictions to any global data structures used within the

a�ected portions of code.

For the MGPOM code, we chose the static allocation model since all arrays used within

all loops of the chosen subroutines had the same dimensionality (at least within the �rst

two de�ned indices). A subroutine was written to determine the number of threads to be

used within the MPI process based on the size of the data block assigned to the process and

a �xed parameter value denoting the minimum threshold of grid points that would require

a thread be created. A two-dimensional decomposition along the �rst two indices of the

block (and consequently all other pertinent arrays) into sub-blocks is then computed: one

sub-block per thread to be created. The indices within the block assigned to the process for

each of the blocks is saved into a global array. These index values are used by each thread
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created as loop iteration bounds within each threaded subroutine.

4.2.1 Finding Data Dependencies

While each loop was able to execute all iterations independently within the subroutines

examined from MGPOM, this may not be the case with other codes. If there are data

dependencies that restrict the order in which loop iterations must be executed, there may

still be possibilities for concurrency within that loop. Such a situation would require a

more careful synchronization of thread execution in order to enforce the correct iteration

ordering.

Since there were no data dependencies within loops of the chosen MGPOM subroutines,

we next checked for data dependencies between loops that resulted from the data decompo-

sition. In this case, we were looking for potential read/write con
icts. That is, threads that

access some array element that is within the assigned sub-block of another thread. For such

a con
ict the order of execution between the reading of an array value and the update of

that array value must be done in the correct order. (It was determined that no write/write

con
icts were possible in the threaded subroutine loops since all threads modi�ed only those

array elements assigned to them.)

In order to �nd any inter-loop dependencies between threads, a listing of the read set and

write set of each loop was compiled and then compared. For our purposes with MGPOM,

the read set of a loop is the set of all array elements that are used on the right hand side of

an assignment statement (the value is \read" from memory) while the write set is the set

of all array elements that are used on the left hand side of an assignment statement (the

value is \written" into memory).
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To identify quickly and completely all of the read and write sets internal to each loop

contained within a subroutine a form was created. The form contained columns for loop

numbers and the write set and read set for each loop. It is not enough to know just the

names of the arrays within each set; the variables used to index these arrays within the

loop are also needed. After all the data has been entered for each loop of a subroutine, the

write set of each loop is compared to the read sets of all loops for any overlap.

The decomposition of data determines where overlap can occur. In the case of MGPOM,

the data block assigned to each process that would create threads was divided along the �rst

and second dimensions; i.e., the I and J axes of the array. Thus, overlap between threads

under this static decomposition is possible when one thread accesses an array element

outside the assigned sub-block. That is, an array reference within a loop contaning an

index of I+1, J+1, I-1, or J-1 has the potential of using a value \on the other side of the

fence." Should a read (write) set contain a potential overlap index of an array contained

within a write (read) set, there exists the potential for a read/write con
ict and the order

of execution between these loops must be preserved for correct execution. (It is possible

to have read/write con
icts within the same loop. A more complex solution is required to

handle these cases than is described below.)

As a concrete example of this process, consider the code extract of two loops from a

subroutine of the MGPOM program shown in Figure 1. Figure 2 displays the form entries

that detail the write and read sets for these loops. Since the data decomposition for the

threaded version of MGPOM deals only with the �rst and second indices, we need only

identify any overlap of array references containing index values of I�1 and J�1. Examina-

tion of the data in Figure 2 shows that such an overlap exists, speci�cally, A(I+1,J,K) or
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Figure 1 MGPOM Code Example for Read/Write Con
icts

DO 315 K=2,KBM1

DO 315 J=1,JM

DO 315 I=1,IM

A(I,J,K)=A(I,J,K)

& -.50*(AAM(I,J,K)+AAM(I-1,J,K))*(H(I,J)+H(I-1,J))

& *(QB(I,J,K)-QB(I-1,J,K))*DUM(I,J)/(DX(I,J)+DX(I-1,J))

C(I,J,K)=C(I,J,K)

& -.50*(AAM(I,J,K)+AAM(I,J-1,K))*(H(I,J)+H(I,J-1))

& *(QB(I,J,K)-QB(I,J-1,K))*DVM(I,J)/(DY(I,J)+DY(I,J-1))

A(I,J,K)=.50*(DY(I,J)+DY(I-1,J))*A(I,J,K)

C(I,J,K)=.50*(DX(I,J)+DX(I,J-1))*C(I,J,K)

315 CONTINUE

DO 230 K=2,KBM1

DO 230 J=1,JM

DO 230 I=1,IM

QF(I,J,K)=(W(I,J,K-1)*Q(I,J,K-1)

& -W(I,J,K+1)*Q(I,J,K+1))/(DZ(K)+DZ(K-1))*ART(I,J)

& +A(I+1,J,K)-A(I,J,K)+C(I,J+1,K)-C(I,J,K)

QF(I,J,K)=((H(I,J)+ETB(I,J))*ART(I,J)*

& QB(I,J,K)-DT2*QF(I,J,K))/((H(I,J)+ETF(I,J))*ART(I,J))

230 CONTINUE

C(I,J+1,K) of the read set for loop 230 overlap with A(I,J,K) and C(I,J,K) of the write

set of loop 315.

If loops are separated from one another by several other loops or intervening lines of

code, it might be assumed that the correct execution order will naturally occur. This is

not necessarily the case. As stated previously, the order of execution for concurrent threads

is non-deterministic and the actual execution order between threads cannot be predicted.

Good programming practice requires that even when the slightest potential for some con
ict

to occur is present, steps must be taken to speci�cally ensure a correct execution ordering.

There are several methods available within the functionality of Pthreads or that can be

constructed with Pthreads routines to coordinate execution between threads. In order to
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Figure 2 Write Set and Read Set Form for Loops 315 and 230

Loop Write Set Read Set

315 A(I,J,K) A(I,J,K) AAM(I,J,K) AAM(I-1,J,K) H(I,J) H(I-1,J)

C(I,J,K) QB(I,J,K) QB(I-1,J,K) DUM(I,J) DX(I,J) DX(I-1,J)

C(I,J,K) AAM(I,J-1,K) H(I,J-1) DVM(I,J) DY(I,J)

DY(I,J-1) DY(I-1,J) DX(I,J-1)

230 QF(I,J,K) W(I,J,K-1) Q(I,J,K-1) W(I,J,K+1) Q(I,J,K+1)

DZ(K) DZ(K-1) ART(I,J) A(I+1,J,K) A(I,J,K)

C(I,J+1,K) C(I,J,K) H(I,J) ETB(I,J) QB(I,J,K)

DT2 QF(I,J,K) ETF(I,J)

preserve simplicity within the threaded MGPOM code, we chose to use a barrier placed

between loops that had potential for read/write con
icts. A description of the barrier

implementation used is given in the next section.

4.2.2 Barriers

Barriers are constructs that halt execution of threads until all threads have reached the

barrier. Once all threads have reached the barrier position within the code, they are released

to continue execution. Barriers are, thus, a synchronization point for all threads. The

module code for the barrier implementation used within MGPOM is given in Appendix A.

This code is a Fortran version of the barrier code written in C found in [2].

The barrier derived type (BARRIER T) contains a mutex, a condition variable, three

integers and a LOGICAL toggle. The integers are used to denote whether a barrier instance

has been properly initialized, to keep track of the number of threads that must reach the

barrier before the threads are released, and to hold a count of the number of threads that

are currently waiting at the barrier. The mutex controls access to the integer counts and the

toggle as well as protect the condition variable. The condition variable is used to put threads
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to sleep that have reached the barrier and also as a mechanism to awaken those threads for

continuation of execution when the last thread arrives at the barrier. The toggle is used in

the conditional expression that ultimately allows threads to proceed from the barrier.

There are three routines within the barrier module. BARRIER INIT() initializes the

barrier and validates it. This routine includes the default initialization of the mutex and

condition variable as well as setting the number of threads that must reach the barrier in

order to trigger the release of all threads held. The BARRIER DESTROY() routine uses

Pthread functions to destroy the mutex and condition variable and invalidate the barrier

for future use.

When each thread arrives at the barrier call, BARRIER WAIT(), the mutex is ac-

quired and the count is decremented. If the count is not zero, the current value of the toggle

is copied into a local variable and the thread is put to sleep by calling fpthrd cond wait()

(which also releases the mutex). By comparing the local copy of the toggle value with the

global barrier toggle value, threads which might be inadvertently woken up before the last

thread has arrived will be put back to sleep. When the �nal thread needed to reach the

barrier arrives, the count is decremented to zero. This �nal thread switches the value of the

toggle, resets the count for the next use of the barrier, and broadcasts a wakeup signal to

all other held threads. Upon wakeup from the broadcast signal, each thread will check the

value of the global toggle to their local copy, determine that the two values are di�erent,

and proceed to the code following the barrier call.
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4.3 Pthread Calls

The �nal phase for the threading of existing codes is to insert calls to the FPTHRD sub-

routines. Above we have described how some calls were encapsulated within the barrier

implementation. Also, it is hoped that any other calls to synchronization routines needed

to ensure correct execution would be placed as needed. The other major chore that needs

to be completed is the insertion of code to create threads that will execute the threaded

subroutines.

The thread creation routine allows a single argument to be sent to the subroutine. If the

original subroutine that is to be threaded uses more than a single parameter, some adjust-

ments need to be made. It is recommended that all parameters to the target subroutine be

placed within a global module that can be USE-associated within the subroutine and the

calling routine. This would allow the single parameter to be used to send an integer to the

subroutine that would contain a unique thread number. Within the MGPOM code, this

unique thread number is used to index the global index array for the loop bounds computed

via the data decomposition subroutine. One other possibility would be to create a derived

type that holds all the di�erent parameter values (as well as the thread number, if needed)

required by the threaded subroutine. In any event, some modi�cation of the subroutine

header and handling of parameters will be necessary.

The above is easily applied to subroutines that are called at a single point within the

overall code. However, it is common practice to employ a subroutine several times within a

code for performing the same computations on di�erent parameter sets. In order to thread

such a subroutine, a more involved code transformation is needed. In this instance, as
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before, all parameters should be encapsulated within a module for thread access. Where

the subroutine header was modi�ed above, a number of dummy subroutines are written

which accept a single parameter. It is these dummy subroutines that are used in thread

creation and their only function is to call the target subroutine with the appropriate set of

parameters.

For example, assume subroutine A is to be executed concurrently and is called from

three di�erent points within a program with three di�erent sets of parameters. All three

sets of parameters are de�ned within a module (or three separate modules dependent upon

code requirements) and three dummy subroutines, say A1, A2, and A3, are created. Each

of the di�erent dummy routines simply contains a call to subroutine A with one of the

original parameter sets. When creating threads for each individual call to subroutine A,

the threads are created using the appropriate dummy subroutine.

If the code contains consecutive calls to the same routine with di�erent parameter sets,

a single dummy subroutine can be constructed that calls the subroutine with each di�erent

data set. Thus, the overhead of creating threads for multiple subroutines is reduced to a

single instance. Agglomerating any number of consecutive threaded subroutines can be done

within a single dummy subroutine. There is no need for the subroutines to be the same.

However, because some threads may complete execution of one call to a subroutine before

others, the programmer must ensure that there are no data dependencies between di�erent

calls to the routines called within the dummy subroutine. A barrier call between subroutine

calls would delay execution of a subsequent routine until all threads had completed execution

of the prior subroutine.

The code to create threads at the calling point of the threaded subroutine may simply
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be a loop over the number of threads to be created that calls the fpthrd create routine.

In the most simple case, following this loop would be another loop to join all the created

threads. This second loop would pause the creating thread until all created threads had

�nished. Other activities can be pursued by the creating thread, including taking a share of

the work to be done. While this does reduce the amount of thread resources that would be

used, programming for any other activity of the creating thread will require more complex

coding.

5 Performance of Threaded POM

The physical geographic area we chose to run for this study is the Persian Gulf. This area

extends from 48 East to 58 East in longitude and from 23.5 North to 30.5 North in latitude.

Part of the Gulf of Oman is also included in this physical domain. The twenty-block grid

contains a total of 32,031 grid points with only 9,722 of those as unused land points. The

twenty-block grid was generated from a one-block grid by a simple algebraic scheme using

the EAGLEView software package [11]. Details of the grid generation techniques used to

create this multiblock grid data set can be found in [7].

All runs reported in this section were performed on an SGI Origin 2000. These runs

computed a 10-day simulation of the Persian Gulf model. The MPI-only version of MGPOM

took 4325 seconds (�1.2 hours) using 20 processors.

The �rst subroutine chosen for threading was PROFQ which was found to be the dom-

inant subroutine with regard to execution time during the pro�ling of the MGPOM code.

The PROFQ-threaded version of MGPOM took 3354 seconds (55.9 minutes) to run the
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10-day Persian Gulf simulation. This represents a 22.5% reduction in execution time for

changes that took less than one half hour to make the code modi�cations.

To date, four of the longest executing subroutines from the MGPOM code have been

threaded. This version of the code runs the 10-day simulation in 2835 seconds (47.25

minutes) or a 34.5% reduction of wallclock execution time over the MPI-only MGPOM

code.

For all threaded code runs, a total of 44 processors were requested from which 20 were

used to run the MPI processes. It is assumed that the threads created during the threaded

MGPOM runs were migrated to the extra processors allocated to the run.

6 Conclusion

We have presented the methods used to convert an ocean circulation model code for mul-

tithreaded execution using the Fortran 90 API to Pthreads developed at the U.S. Army

Engineer Research and Development Center Major Shared Resource Center. We have also

demonstrated that this threaded code runs faster than the original version.

The techniques described herein should be applicable to a large number of other scienti�c

codes. With some threads programming experience, it is felt that programmers would be

able to develop more complex threaded codes from current Fortran codes.
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APPENDIX A|FPTHRD Barrier Code

MODULE BARRIER

!=======================================================================!

! Module for F90 Pthreads API to define a barrier for threads

!

! Written by Clay Breshears, 7 FEB 2000

!

! Based on Butenhof "Programming with POSIX Threads," Section 7.1.1

!=======================================================================!

USE FPTHRD

TYPE BARRIER_T

TYPE(FPTHRD_MUTEX_T) :: mutex ! control access to barrier

TYPE(FPTHRD_COND_T) :: cv ! wait for barrier

INTEGER :: valid ! set when valid

INTEGER :: threshold ! number of threads required

INTEGER :: counter ! current number of threads

LOGICAL :: cycle ! alternate cycles (T or F)

END TYPE BARRIER_T

INTEGER, PARAMETER, PRIVATE:: BARRIER_VALID = 14404350 ! 0xdbcafe

CONTAINS

SUBROUTINE BARRIER_INIT(B, C, STATUS)

!

! Initialize a barrier for use

!

TYPE(BARRIER_T), INTENT(OUT):: B

INTEGER, INTENT(IN):: C

INTEGER, INTENT(OUT):: STATUS

INTEGER:: ierr

TYPE(C_PTR) NULL

NULL=C_NULL

B%threshold = C

B%counter = C

B%cycle = .FALSE.

CALL FPTHRD_mutex_init(B%mutex, NULL, STATUS)

IF (STATUS .NE. 0) RETURN
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CALL FPTHRD_cond_init(B%cv, NULL, STATUS)

IF (STATUS .NE. 0) THEN

CALL FPTHRD_mutex_destroy(B%mutex, ierr)

RETURN

ENDIF

B%valid = BARRIER_VALID

RETURN

END SUBROUTINE BARRIER_INIT

SUBROUTINE BARRIER_DESTROY(B, STATUS)

!

! Destroy a barrier when done using it

!

TYPE(BARRIER_T), INTENT(INOUT):: B

INTEGER, INTENT(OUT):: STATUS

INTEGER:: ierr

IF (B%valid .NE. BARRIER_VALID) THEN

STATUS = EINVAL

RETURN

ENDIF

CALL FPTHRD_mutex_lock(B%mutex, STATUS)

IF (STATUS .NE. 0) RETURN

!

! Check whether any threads are known to be waiting; report

! "BUSY" if so

!

IF (B%counter .NE. B%threshold) THEN

CALL FPTHRD_mutex_unlock(B%mutex, STATUS)

STATUS = EBUSY

RETURN

ENDIF

B%valid = 0

CALL FPTHRD_mutex_unlock(B%mutex, STATUS)

IF (STATUS .NE. 0) RETURN

!

! If unable to destroy either mutex or cond_var object,

! return the error status

!

CALL FPTHRD_mutex_destroy(B%mutex, STATUS)

CALL FPTHRD_cond_destroy(B%cv, ierr)

IF (STATUS .EQ. 0) STATUS = ierr
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RETURN

END SUBROUTINE BARRIER_DESTROY

SUBROUTINE BARRIER_WAIT(B, STATUS)

!

! Wait for all members of a barrier to reach the barrier. When

! the count (of remaining members) reaches 0, broadcast to wake

! all threads waiting.

!

TYPE(BARRIER_T), INTENT(INOUT):: B

INTEGER, INTENT(OUT):: STATUS

INTEGER:: CANCEL, TMP, ierr

LOGICAL:: CYCLE

IF (B%valid .NE. BARRIER_VALID) THEN

STATUS = EINVAL

RETURN

ENDIF

CALL FPTHRD_mutex_lock(B%mutex, STATUS)

IF (STATUS .NE. 0) RETURN

CYCLE = B%cycle ! Remember which cycle we're on

B%counter = B%counter - 1

IF (B%counter .EQ. 0) THEN

B%cycle = .NOT. B%cycle

B%counter = B%threshold

CALL FPTHRD_cond_broadcast(B%cv, STATUS)

!

! The last thread into the barrier will return status

! -1 rather than 0, so that it can be used to perform

! some special serial code following the barrier

!

if (STATUS .EQ. 0) STATUS = -1

ELSE

! Wait with cancellation disabled, because BARRIER_WAIT

! should not be a cancellation point.

!

CALL FPTHRD_setcancelstate(PTHREAD_CANCEL_DISABLE, CANCEL, ierr)

! Wait until the barrier's cycle changes, which means

! that it has been broadcast, and we don't want to wait
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! anymore.

!

DO WHILE (CYCLE .EQV. B%cycle)

CALL FPTHRD_cond_wait(B%cv, B%mutex, STATUS)

IF (STATUS .NE. 0) EXIT

END DO

CALL FPTHRD_setcancelstate(CANCEL, TMP, ierr)

ENDIF

! Ignore an error in unlocking. It shouldn't happen, and

! reporting it here would be misleading -- the barrier wait

! completed, after all, whereas returning, for example,

! EINVAL would imply the wait had failed. The next attempt

! to use the barrier *will* return an error, or hang, due

! to whatever happened to the mutex.

!

CALL FPTHRD_mutex_unlock(B%mutex, ierr)

RETURN

END SUBROUTINE BARRIER_WAIT
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